
Porting the ICON Non-hydrostatic
Dynamics and Physics to GPUs

1

Programming weather, climate, and earth-system models
on heterogeneous multi-core platforms

Sep. 7-8, 2011, NOAA, Boulder USA

William Sawyer (CSCS/ETH), Christian Conti (ETH),
Xavier Lapillonne (C2SM/ETH)

The ICON Model

• ICOsahedral Non-hydrostatic model

• Multi-resolution grid (not supported here)

• Triangular cells

• Conservation laws

• ‘Bandwidth limited’

• Extensive use of indexing arrays

• Developers: MPI-M, DWD

ICON-GPU Project

• CSCS/C2SM offered its assistance with GPUs

• Goal: compare GPU paradigms in terms of efficiency, usability and
developer friendliness

• Non-hydrostatic solver (~5K l.o.c.), and physical parameterizations

• Paradigms chosen: OpenCL, CUDAFortran for dynamics,
accelerator directives (PGI/Cray) for physics

• OpenCL NH solver: 6 weeks, by PhD student (Conti)

• CUDAFortran NH solver: ~8 weeks (Sawyer)

• Lapillonne: microphysics, radiation, turbulence with directives

0.01

0.10

1.00

10.00

100.00

1000.00

0.01 0.10 1.00 10.00 100.00

G
FL

O
P

/s

FLOP/BYTE

Roofline of Various GPUs

PCIe Theoretical Bandwidth - 8 GB/s
(GPU as Accelerator)

Porting NH solver to GPUs

Fortran

OpenCL CUDAFortran

CUDAFortran Example

kernel invocation

kernel content

 OpenCL/CUDAFortran Approaches

• Minimal refactoring

• Extensive use of local
(shared) memory

• Iteration space: 1D or 2D

• Blocking factor: nproma=1
optimal

• Simpler but more kernels,
fewer IFs in kernels

• Refactored to remove
intermediate arrays

• More use of registers

• 1-D grid of thread blocks,
each with 2D distribution

• nproma=8/16 optimal

• Fewer kernels, more IFs

OpenCL PGI CUDAFortran

Implicit Vertical Solver

• Implicit solver requires a tridiagonal solution for each vertical column

• All 2-D arrays except one (z_q) can be replaced with registers;
CUDAFortran version makes use of this

CPUs vs. GPUs

Magny-Cours - 1T

Magny-Cours - 12T

Magny-Cours - 24T

SGI UV1000 (Westmere) 1T

SGI UV1000 (Westmere) 7T

SGI UV1000 (Westmere) 15T

Tesla S1070 (OpenCL)

Tesla S1070 (CUDAFortran)

GeForce GTX285 (OpenCL)

GeForce GTX285 (CUDAFortran)

Fermi M2050 (OpenCL)

Fermi M2050 (CUDAFortran)

AMD Cayman (OpenCL)

1 10 100 1,000 10,000

4.2x
4.3x

4.0x

2.4x

3.2x

3.2x

2.9x

4.2x
4.1x

4.2x

3.3x

3.2x

2.3x

R2B03 (s.) R2B04 (s.)
466 1954
54 231
45 179
197 820
31 129
239 992
53 171
58 193
37 117
41 130
38 93
25 57
30 88

0.1

1.0

10.0

100.0

1000.0

0.1 1.0
P

er
fo

rm
an

ce
 (G

FL
O

P
/s

)
Operational Intensity (FLOP/B)

OpenCL Kernels

R2B3 to R2B4
Kernels acting
on small arrays

M2050 > Cayman

Kernels with
loops

CUDAFortran Time Distribution
 calls t_min t_average t_max t_total
 --
 total 1 57.547s 57.547s 57.547s 57.547s 57.547
 solve_nh 1000 .05614s .05679s .06111s 56.790s 56.790
 nh_driver 10 5.722s 5.755s 5.886s 57.547s 57.547
 intp 1 .01501s .01501s .01501s .01501s 0.015
 vel tendencies 2000 .00797s .00987s .01238s 19.733s 19.733
 cells to edges 2000 .00000s .00044s .00100s .87150s 0.872
 exner value 2000 .00007s .00072s .00193s 1.444s 1.444
 rho and ddz_exner 2000 .00077s .00101s .00147s 2.011s 2.011
 horizontal calcs 2000 .00104s .00187s .00296s 3.742s 3.742
 rbf vt calc 2000 .00083s .00090s .00105s 1.798s 1.798
 vn avg 2000 .00106s .00107s .00120s 2.149s 2.149
 vn vt covariant ma 2000 .00374s .00382s .00455s 7.643s 7.643
 div-related 2000 .00067s .00069s .00086s 1.379s 1.379
 vertical calcs 2000 .00367s .00375s .00422s 7.500s 7.500
 tridiagonal solver 2000 .00043s .00044s .00059s .88492s 0.885
 post calcs 2000 .00312s .00345s .00409s 6.901s 6.901
 device copies 1 .17517s .17517s .17517s .17517s 0.175
 --

• More optimizations possible!

• “vel tendencies” consists of 13 kernels, “vertical calcs” 5 kernels, “vn
vt covariant”also 5, but still they seem to contain bottlenecks

• Device copies and tridiagonal solver appear not to be a problem

Aggregated NH Performance (DP)

• Fermi M2050 (CUDAFortran):

• R2B3: 18.8 GFLOP/s

• R2B4: 33.0 GFLOP/s

• Cayman (OpenCL):

• R2B4: 21.2 GFLOP/s

Physics Parameterizations

• To be shared between ICON and COSMO (European regional model)

• Currently ported to GPUs:

• PGI : microphysics (hydci_pp), radiation (fesft), turbulence (only
turbdiff yet)

• OMP – acc (Cray) : microphysics, radiation

• GPU optimization: loop reordering, replacement of arrays with scalars

• Note: hydci_pp, fesft and turbdiff subroutines represents respectively
6.7%, 8% and 7.3% of the total execution time of a typical cosmo-2
run.

Physics Performance

• Peak performance of Fermi card for double precision is 515 GFlop/s, i.e.,5%, 4.5% and
2.5% of peak performance for the microphysics, radiation and turbulence schemes,
respectively

• Parallel CPU code run on 12 cores AMD magny-cours CPU – however there are no mpi-
communications in these standalone test codes.

• Note the peak performance of Fermi card is 5 times that of the magny cours processor.
Overhead of data transfer for microphysics and turbulence is very large.

Lessons learned

• Never underestimate the potential of a smart, motivated
graduate student!

• CUDA/OpenCL programming not that difficult, but highly error-
prone; debugging options limited

• CUDAFortran is much more ‘appealing’ to developers, but
OpenCL is a portable paradigm

• Optimizations to both versions still possible

• Future: use domain-specific language to describe solver; library to
implement kernel operations

• Physics: we must learn how to combine directive-based Fortran
codes with CUDA/C++ codes (e.g., COSMO dycore)

Thank you for your attention!
wsawyer@cscs.ch

16

Physical Parameterizations

• 2D data fields inside the physics packages with
one horizontal and one vertical dimensions: f
(nproma,ke), with nproma = ie x je / nblock.

• 2D data fields inside the physics packages with
one horizontal and one vertical dimensions: f
(nproma,ke), with nproma = ie x je / nblock.

• Goals:

• Parameterizations to be shared with
COSMO (regional) model

• Blocking strategy: all physics
parametrization could be computed while
data remains in the cache

call init_radiation
call init_turbulence

…
do ib=1,nblock
 call copy_to block
 call organize_radiation
 …
 call

organize_turbulence
 call copy_back
end do

(c) CSE Lab 2010 - DIEGO ROSSINELLI, CHRISTIAN
CONTI

0.1

1.0

10.0

100.0

0.010 0.100 1.000 10.000 100.000

G
FL

O
P

S

Operation Intensity

4x Quad-Core AMD Opteron 8380 @ 2.5GHz - 1 Thread - C++

THE ROOFLINE MODEL

OPERATIONAL INTENSITY R = FLOPS/MEMORY TRAFFIC (BYTES)

PERFORMANCE MODEL FOR BOTH GPU AND CPU

S. Williams, A. Waterman, D. Patterson, "Roofline: An Insightful Visual Performance Model for Floating-Point Programs and Multicore Architectures",
Communications of the ACM (CACM), April 2009.

0.1

1.0

10.0

100.0

0.010 0.100 1.000 10.000 100.000

G
FL

O
P

S

Operation Intensity

3 GFLOP/S
C++ MICROBENCHMARK

STREAM BENCHMARK

4.7 GB/S

X

MAXIMUM ACHIEVABLE
PERFORMANCE!

“HOW GOOD IS MY CODE?”

f = r · bmax

f = fmax

Green Computing:
- computationally bound: reduce bus clock/s
- memory bound: reduce processor clock/s

GPU Bandwidths

0

20

40

60

80

100

120

1 10 100 1000 10000 100000

B
an

d
w

id
th

 (G
B

/s
)

size (kB)

M2050
T10
GTX285
CaymanR2B3

R2B4

